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Abstract—Physical layer secrecy in wireless networks in the
presence of eavesdroppers of unknown location is considered.
In contrast to prior schemes, which have expended energy in
the form of cooperative jamming to enable secrecy, we develop
schemes where multiple transmitters send their signals in a
cooperative fashion to confuse the eavesdroppers. Hence, power
is not expended on “artificial noise”; rather, the signal of a given
transmitter is protected by the aggregate interference produced
by the other transmitters. We introduce a two-hop strategy for
the case of equal path-loss between all pairs of nodes, and then
consider its embedding within a multi-hop approach for the
general case of an extended network. In each case, we derive
an achievable number of eavesdroppers that can be present in
the region while secure communication between all sources and
intended destinations is ensured.

I. INTRODUCTION

Because of the broadcast nature of wireless networks, any
node in the coverage range of a source can overhear any
message that it transmits. Consequently, one of the most
important and difficult considerations in wireless networks
is secrecy. The traditional approach to secrecy is encryption
of the plain message by means of special functions that are
assumed to be computationally infeasible for the adversary to
decrypt [1]. However, because of improvements in processors
and methods of breaking such encryption systems, there are
concerns that these assumptions no longer suffice. Especially
in sensitive applications requiring everlasting secrecy, users
might prefer a higher level of secrecy. Here we consider
methods of network design that inhibit the reception of the
transmitted signal at an eavesdropper. This might be used in
conjunction with traditional cryptographic approaches, as part
of a defense in depth approach, or it might enable information
theoretic secrecy, as described next.

In 1949, Shannon introduced the notion of perfect secrecy
[2]: if the eavesdropper’s uncertainty (entropy rate) about the
plain message after seeing the transmitted signal is equal to the
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eavesdropper’s uncertainty about the message before seeing
the transmitted signal, then “perfect secrecy” is said to be
achieved. Based on this, Wyner introduced the wiretap channel
and showed that, in a degraded wiretap channel, adding
randomness to the codebook and using channel uncertainty
can protect the secure message from being intercepted by the
eavesdropper [3]. Later, the idea of the wiretap channel was
extended to more general cases [4], [5].

In all cases, the key to a positive secrecy rate is to have a bet-
ter channel from the transmitter to the intended receiver than to
the eavesdropper. However, in many cases the eavesdropper’s
channel is better than the legitimate channel; for example, the
eavesdropper might have a much better receiver than that of the
intended recipient or the eavesdropper might be much closer
to the transmitter than the intended receiver. Furthermore, in
many situations the location of the eavesdroppers are unknown
to the legitimate nodes.

To combat these problems, one must design algorithms
to produce the required advantage for the intended recipient
over the eavesdroppers. Negi and Goel introduced the idea of
adding artificial noise to the system by means of a multiple
antenna transmitter or a single antenna transmitter with some
helper nodes [6], [7]. The artificial noise is placed in the null
space of the channel from the transmitter to the intended re-
cipient and consequently does not affect the intended recipient
while at the same time degrading the eavesdropper’s channel
with high probability. Subsequently, cooperative jamming (by
producing artificial noise) [8]–[10] and using helper nodes [11]
to improve physical layer secrecy in small networks has been
extensively investigated.

However, in many network scenarios there are simultaneous
ongoing data flows between source-destination pairs. The
effect of their interference on the secrecy of wiretap channels
and methods to increase the secrecy rate region for small
networks consisting of at most two senders, two receivers and
one external eavesdropper have also been studied in recent
years [12]–[15].

The primary focus of this paper is to propose cooperative
strategies that use the mixed signal from the simultaneous
transmissions of multiple transmitters to hide each signal from
passive but intelligent and powerful eavesdroppers.

Although considerable research has been devoted to physi-
cal layer secrecy in scenarios with a few nodes, e.g. one trans-
mitter, one receiver, one eavesdropper and a few helper nodes
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that relay the message or generate artificial noise to help obtain
secrecy, rather less attention has been paid to security in large
multi-hop wireless networks with a large number of legitimate
nodes and eavesdroppers. In this case, the asymptotic results
for large networks are often obtained as estimates for the utility
of approaches in finite size wireless networks. Consequently,
secrecy in large networks has recently been considered in the
work of [16] by introducing the secrecy-graph, which has been
extended in [17]–[19]. Furthermore, connectivity [20], [21],
coverage [22], scalability [23]–[26] and cooperative jamming
[27] in large wireless networks have been studied.

In this paper, we consider a cooperative strategy to improve
physical layer secrecy in large wireless networks with a large
number of sources, destinations, relay nodes and eavesdrop-
pers. In contrast to other cooperative scenarios where helper
nodes generate artificial noise, here each node transmits its
own (independent) message to the corresponding destination
in the presence of passive eavesdroppers. The signal of each
transmitter is concealed from the eavesdroppers by interfer-
ence produced from the aggregate signal of other transmitters.
As in [27], legitimate nodes do not perform any interference
alignment or interference cancellation.

The legitimate nodes communicate with each other in such
a way that intended receivers receive the signal with signal-
to-interference-plus-noise-ratio (SINR) higher than a threshold
required to decode the message with arbitrarily low probability
of error, while at the same time keeping the SINR at the
eavesdroppers lower than another arbitrary threshold. This
approach is beneficial from different perspectives. From a
practical point of view, because the thresholds are separate, the
system designer has the freedom to choose threshold values
based on available equipment and security requirements. The
required SINR threshold for the eavesdropper can be chosen so
small that even a smart eavesdropper equipped with a suitable
modern decoder would not be able to decode the signal. From
an information theoretic point of view, the required SINR
thresholds at the legitimate and eavesdropper nodes can be
chosen such that the legitimate channel always has a required
advantage over the eavesdropper’s channel with probability
approaching one. This guarantees that we always can achieve
a desired secrecy rate from each source to its corresponding
destination.

In the literature of physical layer secrecy in large wireless
networks, usually geometric approaches based on the relative
location of legitimate and eavesdropper nodes have been
considered and then the effect of multi-path fading on the
received signal has been ignored (e.g. [16]–[20]); however,
in our method, the presence of fading is very important for
the scheme to work properly. While in most other schemes
for enhancing physical layer secrecy, the location of the
eavesdroppers and/or channel state information (CSI) of the
source to eavesdropper channels are assumed to be known
by the legitimate nodes, we assume that the locations of
eavesdroppers are not known and legitimate nodes are not
aware of this CSI.

We propose two protocols to enhance physical layer secrecy

in the network described above and study their asymptotic
performance. First, we consider the case of equal path-loss
between all pairs of nodes. This scheme is applicable to the
situation when eavesdroppers cannot be closer to transmitters
than a specific distance or in networks where each transmitter
is able to deactivate the eavesdroppers within a neutralization
region around itself [19]. We consider a two-hop strategy and
propose a protocol to select a messaging relay for each source-
destination pair in such a way that the selected relay has
good links to both that source and that destination. In each
time period, a number of sources simultaneously transmit their
message to corresponding destinations using their selected
relay. The interference from the signals of other transmitters
hides the message of each transmitter from the eavesdroppers.

Next, we consider the general case, when all nodes are
placed uniformly and randomly in a square of area n. We
consider the employment of the proposed scheme within each
cell to support a multi-hop construction within the Gupta-
Kumar framework [28]. By using the proposed protocol, nodes
of each cell choose suitable relays from the next cell in such
a way that each selected relay has a good link to its previous
node. Again the message of each transmitter is concealed
from eavesdroppers by interference from the communication
of other nodes. We find an achievable number of allowable
eavesdroppers that the network can tolerate in the region of
the cell as a function of the number of system nodes, while
guaranteeing a required level of reliability and secrecy.

The rest of the paper organized as follows. Section 2
describes the model and problem formulation. In Sections 3
and 4, the protocols for the case of equal path-loss between all
pairs of nodes and the general case are described and analyzed,
respectively. Discussion, ideas for future work and conclusions
are provided in Sections 5 and 6.

II. MODEL AND PROBLEM FORMULATION

A. Model

We consider an extended wireless network consisting of n
legitimate nodes placed uniformly at random on a 2-D plane
of area [0,

√
n]2. Each node is a source or destination of one

stream and source-destination pairs are randomly assigned.
In addition m eavesdroppers, E1, ..., Em are placed uni-

formly at random on this surface (Figure 1). The locations
of eavesdroppers and the CSI of channels from legitimate
nodes to eavesdropper nodes are assumed to be unknown to
the legitimate nodes.

Denote the kth symbol transmitted by node A by x
(A)
k .

All nodes transmit with the same power ES . The kth signal
received by node B is denoted by y

(B)
k , and the distance

between nodes A and B is denoted by dA,B . We also denote
the noise at receiver B by n

(B)
k and the frequency-nonselective

multi-path fading from a transmitter A to a receiver B by
hA,B. Based on this model, the kth signal received at node B
from node A when all nodes in a group of nodes, S1, transmit
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their signals is:

y
(B)
k =

hA,B

d
α/2
A,B

√
ESx

(A)
k

+
∑

Ai∈S1,Ai �=A

hAi,B

d
α/2
Ai,B

√
ESx

(Ai)
k + n

(B)
k

where α > 2 is the path loss exponent. The noise at
each receiver is assumed to be i.i.d complex Gaussian with
E[|n(B)

k |2] = N0. The multi-path fading hA,B is assumed
to follow a Rayleigh distribution, which remains constant
during the transmission of each packet. Then, |hA,B|2 is
exponentially distributed with mean E[|hA,B|2] and, without
loss of generality, we assume that E[|hA,B|2] = 1. We also
exploit channel reciprocity, i.e. hA,B = hB,A. The SINR from
node A to node B for any two nodes in the network is denoted
by CA,B:

CA,B =
ES .|hA,B|2d−α

A,B∑
i∈S1,i�=j Es|hAi,B|2d−α

Ai,B
+ N0/2

B. Problem Formulation

Our goal is to propose protocols to enhance physical layer
secrecy in the wireless networks described above and find the
achievable number, m(n), of eavesdroppers in the system as
a function of the number of nodes, that can be tolerated while
guaranteeing reliable and secure communication between all
source-destination pairs.

Transmission is reliable provided that each packet is deliv-
ered from a positive fraction of sources to corresponding desti-
nations with high probability as n → ∞, i.e. a positive fraction
of legitimate nodes (relays or destinations) receive pack-
ets with signal-to-interference-plus-noise-ratio (SINR) greater
than a predefined threshold γ, which is required for successful
decoding (with arbitrarily small probability of error) at a
legitimate node. Let P

(S→D)
OUT denote the probability of the

event {CS,D < γ}. For any source S that transmits a mes-
sage, reliable communication with destination D is ensured if
P

(S→D)
OUT → 0.
Transmission is secure provided that, with high probability,

no eavesdropper can achieve a target SINR γE from any of
the sources or relays as n → ∞, i.e. all eavesdroppers are in
outage w.h.p. for large n; where, P (E)

OUT is the probability of

the event
(⋂n

j=1{CSj,E1 < γE} ∩ ... ∩ {CSj ,Em < γE}
)
.

III. EQUAL PATH LOSS BETWEEN ALL PAIRS OF NODES

In this section we consider the case that there is equal path
loss between all pairs of nodes. This assumption also applies
when we know that the eavesdroppers cannot come closer to
each transmitter (source or relay) than a specified distance or
each transmitter can deactivate the eavesdroppers within an
area around it. Without loss of generality, we assume that the
distance between all pairs of nodes is unity (i.e. dA,B = 1,
for all A �= B).

Among n system nodes, during each time period, 2 logn/t
of them are designated as sources and destinations, and the

Fig. 1. Multiple sources, multiple destinations and relay nodes (circles) in
presence of a number of eavesdroppers (crosses)

other system nodes are the assisting nodes. Here t is a
constant to be determined later. We first propose a protocol
to convey messages from a positive fraction of designated
sources to corresponding destinations reliably and securely.
Then, we analyze the system and find the maximum number of
eavesdroppers that can be tolerated while secrecy is maintained
for all transmitted messages.

A. Protocol

The following protocol is employed by sets of logn/t source-
destination (S-D) pairs to set up secure links between each
source and its corresponding destination.

1) Source-destination pair selection: Each of the assisting
nodes (relays) chooses one of the active logn/t source-
destination pairs uniformly at random and waits to
receive a pilot from that S-D pair. This results in
nj , j = 1, ..., logn/t assisting nodes waiting for a pilot
from the jth S-D pair. We term the group of nodes
waiting to receive pilots from the jth S-D pair, the jth

“waiting group” and denote it by Aj , j = 1, ..., logn/t.
2) Channel measurement between sources and relays: Each

source Sj broadcasts a pilot signal. Each node in Aj

measures its channel to Sj : hSj ,Ri , ∀i, j such that
Ri ∈ Aj and j = 1, ..., logn/t. Each eavesdropper
also measures the link between itself and its randomly
selected source. These measurements are assumed to be
perfect.

3) Channel measurement between destinations and relays:
Each destination Dj broadcasts a pilot signal. Each node
in Aj measures its channel to Dj: hRi,Dj ∀i, j such
that Ri ∈ Aj and j = 1, ..., logn/t. Each eavesdropper
also measures the link between itself and its randomly
selected destination. These measurements are assumed
to be perfect.

4) Relay selection: In each waiting group of
nodes, Aj j = 1, ..., logn/t, the relays with
min

{|hSj ,Ri |2, |hRi,Dj |2
}

> 1
2 log (

nt
logn ) are the

designated relays. For the jth S-D pair, let Mj denote
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the number of designated relays and Bj the group of
designated relays. For each S-D pair, relay selection is
successful if exactly one designated relay exists, i.e.
Mj = 1. Each relay in the group Bj sends a pilot to
Sj . Hence, relay selection for Sj is successful if it
receives exactly one pilot. We indicate the group of
sources with successful relay selection by S1 and the
messaging relay for the jth S-D pair by Rj .

5) Message transmission from Sj to Rj : In this step, each
source in S1 (source with a successful relay selection)
transmits its message to the corresponding messaging
relay. Relay Rj receives the signal:

y
(Rj)
k = hSj ,Rj

√
ESx

(Sj)
k

+
∑

Si∈S1,i�=j

hSi,Rj

√
ESx

(Si)
k + n

(Rj)
k

and eavesdropper El, l = 1, . . . ,m− 1, receives:

y
(El)
k = hSj ,El

√
ESx

(Sj)
k

+
∑

Si∈S1,i�=j

hSi,El

√
ESx

(Si)
k + n

(El)
k

6) Message transmission from relay Rj to destinations Dj :
In this step, each messaging relay transmits its message
to the intended destination in a manner similar to the
previous step.

B. Analysis

We first analyze the source-destination pair selection step.
The size of each waiting group is described in the following
lemma.

Lemma 3.1. With high probability, the number of relays in
each and every waiting group satisfies { tn

2 logn < nj <
3tn

2 logn}.
Proof: Since logn/t S-D pairs exist, the probability

that a given relay belongs to a given waiting group is
t

logn ; thus, the number of nodes in each waiting group
nj ∼ Binomial(n, t

logn ). Using a Chernoff bound for binomial
random variables:

P (nj > (1 + δ)
tn

logn
) < e−

δ2tn
2 log n

and
P (nj < (1− δ)

tn

logn
) < e−

δ2tn
4 log n

then, setting δ = 1
2 ,

P
(
(nj >

3tn

2 logn
) ∪ (nj <

tn

2 logn
)
)
< e−

tn
8 log n

Now we want to bound the number of nodes in each of the
waiting groups uniformly. Using a union bound yields:

P
( log n/t⋃

j=1

[
(nj >

3tn

2 logn
) ∪ (nj <

tn

2 logn
)
])

<
logn

t
e−

tn
8 log n → 0.

Now consider the relay selection step. The following lemma
shows that relay selection is successful for a positive fraction
of source-destination pairs. The approach used to prove this
lemma is similar to the approach used in [25].

Lemma 3.2. Let N1 denote the total number of source-
destination pairs with Mj = 1. Then, for the jth source-
destination pair,

Pr(Mj = 1) → 1

e
> 0 as n → ∞

and logn
2et < N1 < 3 logn

2et with probability approaching one.

Proof: Suppose that in a given waiting group with nj

nodes, p is the probability that the minimum of fading of Sj →
Rj and Rj → Dj links for a given S-D pair and given relay
Rj is greater than 1

2 log(
nt

logn ), i.e.

p = Pr

(
min

{|hSj,Ri |2, |hRi,Dj |2
}
>

1

2
log

(
nt

logn

))

The left side of the inequality is the minimum of two exponen-
tial random variables with mean one. Thus, it is an exponential
random variable with mean 1/2. Consequently,

p = e−2
log( nt

log n
)

2 =
logn

nt

From the independence of the fading, the probability that
exactly one relay Rj ∈ Aj has this property is:

Pr(Mj = 1) =

(
nt

logn

)
× p(1− p)(

nt
log n )

=

(
nt

logn

)
× 1

( nt
logn )

(
1− 1

( nt
logn )

)( nt
log n )

( nt
logn ) → ∞ as n → ∞; hence,

Pr(Mj = 1) → 1

e
as n → ∞

Then the number of S-D pairs that have a single relay N1 ∼
Binomial( logn

t , 1
e ); by using the Chernoff bound for binomial

random variables:

P (N1 < (1− δ)
logn

te
) < e−

δ2 log n
2e

and,

P (N1 > (1 + δ)
logn

te
) < e−

δ2 log n
4e

Choosing δ = 1/2 and using the union bound:

P (
logn

2et
< N1 <

3 logn

2et
) > 1− 2e−

log n
8e

Thus in the limit, the number of nodes that find a single relay
satisfies logn

2et < N1 < 3 logn
2et with probability approaching 1.

Now consider the following lemma, which will be very
useful in our analysis [29]:
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Lemma 3.3. Let Y1, . . . , Yn be a sequence of n i.i.d. ex-
ponential random variables, (more generally, each having an
exponential tail F̄ (y) ∼ Ke−ay where K, a > 0). Let
Mn = max (Y1, . . . , Yn). Then, limn→∞ Mn

logn = 1
a a.s.

The following theorem characterizes an achievable number
of eavesdroppers such that with high probability a positive
fraction of the S-D pairs can communicate and all communi-
cations are secure.

Theorem 3.1. Consider the case of equal path-loss between
all pairs of nodes. By applying the proposed protocol, m(n)

eavesdroppers can be tolerated guaranteeing P
(Sj→Dj)
OUT → 0,

for each source Sj which transmits a message, and P
(E)
OUT → 1

as n → ∞, provided:

m(n) = o

(
n

log (1+γE )

2et

logn

)
.

Proof: Because the relay-destination transmission is sim-
ilar to the source-relay transmission, we analyze only the
source-relay transmission. Also, by applying a coding tech-
nique [24], securing each hop is sufficient to ensure source-
destination secrecy.

First consider the probability of outage between a source
and its messaging relay, P (Sj→Rj)

OUT . The SINR at messaging
relay Rj during the transmissions from sources to relays is:

CSj ,Rj =
ES .|hSj,Rj |2∑

i∈S1,i�=j Es|hSi,Rj |2 + N0/2

From Lemmas 3.1 and 3.3 with a = 2, |hSj,Rj |2 >
lognj

2
√
2

>
logn
4 w.h.p. as n → ∞. In the denominator, S1 is the subset of

sources that transmit their message; from Lemma 3.2 , |S1| =
N1 < 3 logn

2et and thus
∑

i∈S1,i�=j |hSi,Rj |2 < 3 logn
et as n → ∞

by the weak law of large numbers. The interference term is
the dominant term in the denominator of CSj ,Rj ; hence,

CSj ,Rj >
logn/4

6 logn/et
> γ

with high probability if we choose t such that t > 24γ
e ; then,

P
(Sj→Rj)
OUT → 0.
Now consider the eavesdroppers. For each source Sj , given

that the group S1 of sources are transmitting and using a union
bound:

P
(Sj→E)
OUT = 1− P

⎛
⎝m(n)⋃

i=1

{CSj ,Ei ≥ γE}
⎞
⎠

≥ 1−
m(n)∑
i=1

P (CSj ,Ei ≥ γE)

Then, using the same approach as in [27], for each eavesdrop-

per:

P (CSj ,Ei ≥ γE)

≤ P

(
ES |hSj ,Ei |2∑

Sk∈Sr,k �=j ES |hSk,Ei |2 + N0/2
> γE

)

< P

(
ES |hSj,Ei |2∑

Sk∈Sr,k �=j ES |hSk,Ei |2
> γE

)

= E{|hSk,Ei
|2,Sk∈S1}

[
P
(
|hSj,Ei |2 > γE

∑
Sk∈S1,k �=j

|hSk,Ei |2
)]

=
∏

Sk∈S1,k �=j

E{|hSk,Ei
|2}
[
e−γE|hSk,Ei

|2
]

≤
(

1

1 + γE

)|S1|

Hence, by the law of total probability and using Lemma 3.2,

P (CSj ,Ei ≥ γE) ≤
(

1

1 + γE

) log n
2et

w.h.p. as n → ∞; and,

P
(E)
OUT ≥ 1−

m(n)∑
i=1

(
1

1 + γE

) log n
2et

→ 1

as n → ∞ for any m(n) = o((1 + γE)
log n
2et ). Using the union

bound again, we obtain P
(E)
OUT , the probability that none of

the eavesdroppers can achieve the target SINR from any of
the transmitting sources. In this case:

m(n) = o

(
(1 + γE)

log n
2et

logn

)
= o

(
n

log (1+γE)

2et

logn

)
.

IV. GENERAL CASE

Now consider the case that the path-loss between pairs of
nodes is based on their relative locations. We consider an
extended network where n nodes are placed uniformly at
random in the 2-D plane on a square of side

√
n. Also m

passive eavesdroppers of unknown channels and locations are
placed uniformly at random. Our goal is to find the maximum
achievable number of eavesdroppers that can be tolerated while
maintaining reliability and secrecy.

We tessellate the square [0,
√
n]2 into n

N square cells, where
N = k logn and each cell is of side

√
N =

√
k log n (Figure

2). Each source sends its message to a final destination in a
multi-hop fashion. Each packet travels cell by cell horizontally
until its x dimension equals the final destination’s x dimension
and then travels vertically until it reaches its final destination.
Using this model, each packets take roughly

√
n

logn hops;

thus, the occurrence of a final destination in each hop is very
infrequent. In other words, most of the traffic entering a cell
is the “through traffic” and just a small amount is local traffic.

As in the standard Gupta-Kumar approach [28], the cells
which are at least Δ

√
N apart (Δ is a constant) can transmit

simultaneously (see Appendix). Thus, we do not consider the
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Fig. 2. The whole area is tessellated into squares of side
√
N . The square

which is centered at cell C is region A.

interference from outside the cell in our analysis and only
focus on the interference from the nodes inside each cell.

As earlier, securing each hop is sufficient to ensure source-
destination secrecy [24]. Hence, we focus on the security of
the through traffic between two adjacent cells and later discuss
its extension to the whole network.

Consider two adjacent cells C and C′. Let NC and NC′

be the number of nodes in cells C and C′ respectively. From
[30], 1/2N < NC < 3/2N and 1/2N < NC′ < 3/2N w.h.p.
providing that k > 8. The cell C is divided into N

c(N) square
sub-cells, each of area c(N) = k1 logN (Figure 3). The time
slot which is assigned to cell C is divided into time periods.
During each time period, the nodes in one sub-cell of C choose
nodes in cell C′ and send their messages securely to them
based on the following protocol. If a packet in an active sub-
cell has its final destination in C′, the other nodes in this sub-
cell stop transmitting their messages and, a protocol similar to
[27] is employed to deliver the packet to the final destination
by using some nodes as chatterers. Then, in the following
time period, the protocol described below resumes. Note that,
because local traffic (i.e. packets whose destinations are in C′)
forms a diminishing fraction of the total traffic, the use of the
protocol in [27] is so infrequent that it does not impact the
power consumption and network throughput.

We denote the number of nodes in the ith sub-cell of C by
Nci . The number of nodes in each sub-cell is characterized by
the following lemma. The same approach as in [30] is used
here.

Lemma 4.1. With high probability, the number of relays in
each and every sub-cell of C satisfies c(N)

4 < Nci <
9c(N)

4 as

N → ∞.

Proof: The probability that a node belongs to a sub-cell ci
is c(N)

N . Given that the number of nodes in cell C, NC = N ′,
Nci ∼ Binomial(N ′, c(N)

N ). Using a Chernoff bound:

P (Nci < (1− δ)
N ′

N
c(N)) < e−

δ2c(N)N′
2N

and,

P (Nci > (1 + δ)
N ′

N
c(N)) < e−

δ2c(N)N′
4N

Where 1/2 < N ′
/N < 3/2 with probability approaching 1.

Using the law of total probability and choosing δ = 1/2,

P
(
(Nci <

c(N)

4
) ∪ (Nci >

9c(N)

4
)
)
< 2e−

c(N)
16

Using a union bound to bound the number of nodes per sub-
cell uniformly:

P

([ N/c(N)⋃
i=1

(
(Nci <

c(N)

4
) ∪ (Nci >

9c(N)

4
)
)])

<
N

c(N)
2e−

c(N)
16

=
2N1−k1/16

k1 logN

Hence, provided that k1 > 16, c(N)
4 < Nci <

9c(N)
4 , ∀i w.h.p

as N → ∞.
The protocol for communication between two adjacent cells

is described in the following section.

A. Protocol

Consider two neighboring cells C and C′ (Figure 3). When
nodes within a sub-cell are transmitting their messages, we
refer to these nodes as sources and the nodes in the neighbor
cell C′ that receive the messages as relays. During each time
period, a fraction 1/t of the sources in the active sub-cell ci
of cell C choose relays from the region [

√
N
4 ,

√
N ]× [0,

√
N ]

of C′, where t is a constant to be determined later. Then, the
sources transmit their messages securely to these relays.

The proposed protocol for conveying the messages securely
on each hop consists of:

1) Channel measurement between sources and relays: A
constant fraction 1/t of sources within sub-cell ci broad-
cast their pilots to the relays in the next cell. Each
node in the region [

√
N
4 ,

√
N ] × [0,

√
N ] of C′ and

each eavesdropper measure the link between itself and
its randomly selected source. These measurements are
assumed to be perfect.

2) Relay selection: A relay that receives a pilot with fading
greater than logN , i.e. |hSj ,Rk

|2 > logN such that Sj ∈
ci and Rk ∈ C′, is a designated relay. We denote the
group of designated relays for source Sj by Bj . Each
relay in each group Bj sends a pilot to Sj . For Sj , the
relay selection step is successful if it receives exactly
one pilot, i.e. from only one relay. We denote this relay
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as Rj . Let S1 denote the set of sources that have exactly
one relay.

3) Message transmission from sources to relays: In this
step, each source in S1 transmits its message to its
corresponding relay. Relay Rj receives the following
signal:

y
(Rj)
k = hSj ,Rj

√
ESd

−α
Sj ,Rj

x
(Sj)
k

+
∑

Si∈S1,i�=j

hSi,Rj

√
ESd

−α
Si,Rj

x
(Si)
k + n

(Rj)
k

and eavesdropper El, l = 1, . . . ,m− 1, receives:

y
(El)
k = hSj,El

√
ESd

−α
Sj ,El

x
(Sj)
k

+
∑

Si∈S1,i�=j

hSi,El

√
ESd

−α
Si,El

x
(Si)
k + n

(El)
k

B. Analysis

Relay selection only depends on the multi-path fading of
the links between sources and relays. Thus from Lemma 3.2,
the probability that exactly one relay is selected is greater
than 1

e > 0. Consequently, a positive fraction of nodes can
always convey messages. Denote the number of such nodes
by N1 = |S1|. Furthermore, from Lemmas 3.2 and 4.1 we
have k1 logN

8et < N1 < 27k1 logN
8et .

Recall from the previous section that P
(Sj→Rj)
OUT is the

probability that the SINR from a given source Sj to its
corresponding relay Rj is less than γ. For each active cell
C, P (E)

OUT is the probability of the event that the SINR at none
of the eavesdropper nodes inside a square region A, centered
at C and of side Δ

√
N (Figure 3) from any of the sources

exceeds the required SINR for eavesdroppers, γE .
The following theorem characterizes an achievable number

of eavesdroppers that the network can tolerate.

Theorem 4.1. Consider the general case with legitimate
and eavesdropper nodes placed uniformly and randomly at
unknown locations on the square region A. For the proposed
protocol, m(N) eavesdroppers can be tolerated while guaran-
teeing P

(Sj→Rj)
OUT → 0 for each source Sj and P

(E)
OUT → 1 as

N → ∞, if:

m(N) = o

(
N

log (1+γE2−α)

8et

logN

)
.

Proof: Consider the active sub-cell ci within C. As
mentioned earlier, we denote the group of active nodes in ci
by S1 and the nodes in S1 by Sj , j = 1, ..., N1. We denote the
corresponding messaging relay for source Sj in the neighbor
cell C′ by Rj . Consider the SINR at each messaging relay:

CSj ,Rj =
ES .|hSj,Rj |2d−α

Sj ,Rj∑
Si∈S1,i�=j ES .|hSi,Rj |2d−α

Si,Rj
+ N0/2

From Lemma 3.3 with a = 1, |hSj,Rj |2 > log(3/8N)√
2

; thus,

|hSj ,Rj |2 > logN
2 as N → ∞.

Now consider the denominator. For each pair of nodes
Si ∈ S1 and Rj , dSi,Rj >

√
N
4  2

√
k1 logN , then

Fig. 3. Two adjacent cells C and C′. During each time period, the nodes
in one sub-cell of cell C choose nodes from area [

√
N
4

,
√
N ]× [0,

√
N ] of

C′ and transmit their messages to them.

we can assume dSi,Rj ≈ di,j , where di,j is the distance
between sub-cell ci and relay Rj . By the weak law of large
numbers,

∑
Si∈S1

|hSi,Rj |2 < 2N1; using Lemmas 3.2 and
4.1,

∑
Si∈S1

|hSi,Rj |2 < 9k1 logN
2et as N → ∞. Furthermore,

the noise term in the denominator is constant while the
interference grows as N gets large; thus,

CSj ,Rj >
ES . log(3/8N)d−α

i,j

2.
∑

Si∈S1
ES .|hSi,Rj |2d−α

i,j

>
logN/2

9k1 logN/et

> γ as N → ∞

w.h.p. provided t > 18k1γ
e . Consequently, P (Sj,Rj)

OUT → 0 as
N → ∞.

Now consider the eavesdroppers. For each source Sj , using
the union bound for the eavesdroppers in the region A:

P
(Sj→E)
OUT = 1− P

⎛
⎝m(N)⋃

l=1

{CSj ,El
≥ γE}

⎞
⎠

≥ 1−
m(N)∑
l=1

P (CSj ,El
≥ γE)

Assume that sub-cell ci is active. Considering the eavesdropper
El, based on its location, we have:

P (CSj ,El
≥ γE) = P (CSj ,El

≥ γE |El ∈ A1)P (El ∈ A1)

+ P (CSj ,El
≥ γE |El ∈ A2)P (El ∈ A2)

+ P (CSj ,El
≥ γE |El ∈ A3)P (El ∈ A3)

where A = A1 ∪ A2 ∪ A3, and: A1 is the circle that is
circumscribed around the sub-cell ci, A2 is the annulus with

the same center with inner radius
√

c(N)
2 and outer radius

3
√

c(N)
2 and A3 is the area of A minus A1 +A2 (Figure 3).
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Then:

P (CSj ,El
≥ γE)

< 1.
πc(N)

2Δ2N

+ 1.
4πc(N)

Δ2N

+ P (CSj ,El
≥ γE |El ∈ A3)

Δ2N − 4.5πc(N)

Δ2N

Thus, we have to bound P (CSj ,El
≥ γE |El ∈ A3):

P (CSj ,El
≥ γE |El ∈ A3)

= P

(
ES .|hSj ,Ei|2d−α

Sj ,El∑
Si∈S1

ES .|hSi,El
|2d−α

Si,El
+ N0/2

≥ γE |El ∈ A3

)

In the denominator of the SINR, removing the noise benefits
the eavesdropper. Also, the distance of the interfering sources
to the eavesdropper is less than the distance of the closest
source to the eavesdropper plus the diagonal of the sub-cell.
In addition, recall that the multi-path fading of different links
is independent. Given that the nodes in the group S1 are
transmitting:

P (CSj ,El
≥ γE |El ∈ A3)

= P
( ES .|hSj,El

|2d−α
Sj ,El∑

Si∈S1
ES .|hSi,El

|2d−α
Si,El

+ N0/2
≥ γE |El ∈ A3

)

< P
( ES .|hSj ,El

|2d−α
Sj ,El∑

Si∈S1
ES .|hSi,El

|2d−α
Si,El

≥ γE |El ∈ A3

)

< P
( |hSj ,El

|2d−α∑
Si∈S1

|hSi,El
|2(d+√2c(N))−α

≥ γE |d >
√
2c(N)

)

< E{|hSi,El
|2,Si∈S1}

[
P (|hSj ,El

|2 ≥ γE .
∑

Si∈S1

|hSi,El
|22−α)

]

= E{|hSi,El
|2,Si∈S1}

[
e−γE.

∑
Si∈S1

|hSi,El
|22−α

]
=
∏

Si∈S1

E{|hSi,El
|2}
[
e−γE2−α.|hSi,El

|2
]

=

(
1

1 + γE .2−α

)|S1|

From Lemmas 3.2 and 4.1, the number of transmitting nodes
N1 = |S1| > k1 logN

8et . Then,

P
(Sj→E)
OUT

≥ 1−
m(N)∑
i=1

[
4.5π logN

tΔ2N
+

(
1

1 + γE .2−α

)k1 logN/8et
]

Using the union bound again, considering that at most 27 logN
8et

sources transmit at the same time (Lemma 4.1), an achievable
number of eavesdroppers in the region A that cannot intercept

the message from any of the sources, as N → ∞, is:

m(N) = o

(
(1 + γE2

−α)
k1 log N

8et

logN

)

= o

⎛
⎝N

k1 log (1+γE2−α)

8et

logN

⎞
⎠ .

V. DISCUSSION

(a) Comparison to previous works: The local region ap-
proach taken here, in contrast to the global approach
taken in [25], has an impact on various convergences
(e.g. the occupancy result in Lemma 4.1 has not been
shown to hold uniformly across all sub-cells of the entire
network), and hence one needs to be careful in making
definitive direct comparisons despite the similarity in
form of a number of the results. Furthermore, when
considering the achievable number of eavesdroppers
o((log n)c1), c1 > 0, from [25] for the same cell size
considered here, it is apparent that the value of c1,
which was not bounded tightly in [25], is critical to the
comparison. Improving this comparison by establishing
bounds on the value of c1 and putting both pieces of
work in the same mathematical framework is currently
under consideration. In performing this comparison,
it is important to note that the approach considered
here is both more power efficient and allows for the
simultaneous transmission of log logn transmitters at the
considered cell size.

(b) Motivating the finite case: The approach proposed in
this paper to physical layer secrecy is also of interest
in the finite case. Suppose we have a finite number of
nodes in a given area with multiple source-destination
pairs among them. By a careful routing and scheduling
of flows in the network, the aggregate signals of the
flows can be employed to help keep each flow secret
from external eavesdroppers while the interference does
not destroy the communication between sources and
destinations. This is currently under consideration.

VI. CONCLUSION

In this paper, we employ cooperative transmission and relay
nodes to improve secrecy. We first consider a scenario of equal
path-loss between all pairs of nodes. A protocol for two-hop
communication between a large number of source-destination
pairs via one relay for each pair is proposed. It is shown that

in this scenario that any m(n) = o

(
n

log (1+γE)
2et

log n

)
number

of eavesdroppers can be tolerated, where n is the number of
system nodes, α is the path-loss exponent, γE is the required
SINR threshold at each eavesdropper, and t is a constant.

Next, for the general case, we consider the local analysis
of a multi-hop strategy in an extended network. In particular,
we tessellate the network into small square cells and propose
a protocol for communication between two neighboring cells.
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In this case, it is shown that m(N) = o

(
N

log (1+γE2−α)
8et

logN

)
eavesdroppers inside and around each cell can be tolerated,
where N is roughly the number of nodes in each cell and t is
a constant different from that employed above.

In contrast to [25], the energy efficiency is improved. In
particular, the energy that chattering nodes employ to generate
artificial noise in [25] can be more than the energy employed
to transmit the message. Here, all the energy is used to transmit
messages and hence there is no extra energy required to obtain
secrecy. Furthermore, by using the proposed protocol, a large
number of nodes share the same bandwidth simultaneously
and achieve a higher bandwidth efficiency.

APPENDIX

We denote the out-cell interference from the transmission
of nodes in other active cells at relay Rj by I

Rj

out. Then,

I
Rj

out <

∞∑
l=1

∑
S∈Sl

Es.(Δ
√
Nl)−α|hS,Rj |2

= ES .(Δ
√
N)−α.

∞∑
l=1

l−α
∑
S∈Sl

|hS,Rj |2

In each active cell we know that N1 < 27 logN
8et nodes are

transmitting. Also, the number of concentric transmitting cells
at the distance lΔ

√
N is 8l; then, the number of nodes trans-

mitting from distance lΔ
√
N simultaneously: |Sl| < 27l logN

et .

Using the law of large numbers
∑

S∈Sl
|hS,Rj |2 < 27

√
2l logN
et .

Besides,
∑∞

l=1 l
−α+1 converges to some constant k for α > 2;

hence,

I
Rj

out <
27

√
2ESk

etΔα

logN

Nα/2
→ 0 as N → ∞.
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